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FOREWORD

The work described in this report was performed at the Grumman Aerospace
Corporation, Bethpage, New York, and administered by the Vibration Section of the
Structures and Dynamics Division, NASA Langley Research Center, Hampton,
Virginia.

The work performed under NASA Contract NAS1-10635-21 with supplementary
funding provided by the Space Division, Rockwell International (POM3WXMZ-483002)
included development of a fundamental finite element hydroelastic formulation appli-
cable to NASTRAN, implementation of the theoretical developments into NASTRAN,
and verification and demonstration of the new technique on various problems including

the 1/8-scale space shuttle external tank model.
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ABSTRACT

A finite element hydroelastic analysis formulation is developed on the basis of
Toupin's complementary variational principle of classical mechanics. Emphasis is
placed on the special case of an incompressible fluid model which is applicable to
propellant tank hydroelastic analysis. A concise fluid inertia representation results
from the assumption of incompressibility and the hydroelastic equations reduce to a
simplified form associated with non-fluid filled structures. The efficiency of the
incompressible hydroelastic formulation is enhanced for both fluid and structure by
introduction of harmonic reduction as an alternative to Guyan reduction. The
theoretical developments are implemented in NASTRAN and the modified NASTRAN
hydroelastic analysis technique is verified and demonstrated as an efficient and
accurate approach with a series of illustrative problems including the 1/8-scale

space shuttle external tank.
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(A), Aik

(C), Cij

List of Symbols

generalized area matrix, generalized area matrix component

(Eq. 2,1-11)
fluid bulk modulus (Eq. 2.1-2)

compliance (flexibility) matrix, compliance matrix component

(Eq. 2.1-10d)

structural elastic modulus

force

matrix defined in (Eq. 2. 3-21c)
multipoint constraint matrix (Eq. 3.1-4)

identity matrix
modified Bessel function (Eq. 5.1-7b)

stiffness matrix, stiffness matrix component
material thermal conductivity (Eq. C-4)
inertance matrix, inertance matrix component (Eq. 2.1-10c)

complementary Lagrangian function (Eq. 2.1-6Db)

mass matrix

cylindrical shell bending moment resultants (Eq. 4.1-6)
cylindrical shell membrane stress resultants (Eq. 4.1-6)
pressure

pressure deviation (Eq. 2.3-15)

associated Legendre function (Eq. 4.1-2)
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Py

List of Symbols (Cont)

static pressurization level (Eq. 4.1-10)

" _ P
Po(ri,zi), PK(ri’zi)’ PK(ri’Zi) harmonic distribution pressure components

A
Q
R

N € < d a3 o4 W

7]

(Eq. 3.1-1)
generalized impulsive force (Eq. A-14)

hemisphere radial dimension (Fig. 4-1), cylindrical shell radial

dimension (Fig. 4-4)

surface area (Eq. 2.1-5)

kinetic energy function (Eq. 2.1-4a)
complementary kinetic energy function (Eq. 2.1-4b)
potential energy function (Eq. 2.1-4b)
complementary potential energy function (Eq. 2.1-4b)
volume

complementary work function (Eq. 2.1-5)
cylindrical shell axial dimension (Fig. 4-4)

surface heat flux per unit area (Eq. C-4)

shell thickness (Fig. 4-4)

particle inertance (Eq. A-2)

meridional wave index (Eq. 4.1-2)

effective fluid mass (Eq. 4.1-9b)

particle mass (Eq. A-1)

effective structure mass (Eq. 4.1-9c¢)
circumferential wave index (Eq. 4.1-2)

surface outward normal unit vector
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L=

"y
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u,

List of Symbols (Cont)

generalized displacement variable (Eq. A-18b)

radial coordinate in cylindrical reference frame (Fig. 3-1a)
position vector in a Newtonian reference frame (Eq. A-1)
time

displacement, displacement vector

axial coordinate in cylindrical reference frame (Fig. 3.1)
temperature

matrix defined in Eq. 2.3-21b

fractional frequency error (Table 3.1)

fractional frequency squared error (Table 3.1)

nondimensional frequency; for hemisphere see Table 4-1; for

cylinder see Fig. 4-7
stiffness constant for hemisphere (Eq. 4.1-1)

circumferential coordinate in cylindrical reference frame
(Fig. 3.1a); meridional angle in spherical reference frame
(Fig. 3.1b)

Poisson's ratio (Eq. 4.1-10)

radial coordinate in spherical reference frame (Fig. 3.1b)
fluid density

structural density

circumferential coordinate in spherical reference frame
(Fig. 3.1b)

circular frequency

empty circular cylinder natural frequency (Eq. 4.1.9a)
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mn

operators:

(¢ )
V()
V()
a( )
6( )

Subscripts
()
()

List of Symbols (Cont)

pressurized empty circular cylinder natural frequency
(Eq. 4.1,10)

total differential
divergence
gradient

partial derivative

variation
t
total impulse, [ ( )dt
-
time derivative, d c(]t )

externally applied
"fluid" or "free surface' as specified in text
"internal” unless used as an index

"structure' or structural surface as specified in text
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Volume I

1 - INTRODUCTION

The increasing complexity of launch vehicle configurations, particularly in the
case of the space shuttle, recently has stimulated considerable interest in the dynamic
behavior of liquid filled tanks. The task of Pogo prediction and suppression, for ex-
ample, requires very complete and accurate mathematical models for the calculation
' of propellant tank hydroelastic modes in the Pogo-susceptible frequency range (2 - 50

" Hz for the space shuttle).

A variety of automatic fluid modeling techniques has been under development

' ranging from finite element and finite difference techniques to approximate analytical
approaches taking advantage of the properties of the fluid velocity potential and the

- consequences of Green's theorem (Refs. 1-5). The available hydroelastic analysis
methods although in most cases theoretically rigorous, contain serious deficiencies in
computational economy and/or numerical accuracy. For example, the NASTRAN hy-
droelastic analysis technique as formulated in the level 15 series is deficient in
computational economy primarily because of an unsymmetrical eigenvalue problem re-

sulting from the use of mixed pressure and displacement generalized coordinates.

In the NASTRAN hydroelastic formulation, the fluid coefficient matrices are in-

: terpreted according to a structural analogy. The fluid pseudo-mass and pseudo-

" stiffness matrices of that formulation are recognized herein as flexibility and inverse

_ mass matrices, respectively, on the basis of the complementary principle in mech-

_ anics known as Toupin's principle (Ref. 6). This revised interpretation is central to the

formulation of the hydroelastic problem presented here.

This report consists of a theoretical development, a description of NASTRAN
program modifications, a program with which some familiarity is assumed, and a se-
- ries of illustrative hydroelastic problems demonstrating the accuracy and efficiency of
the present formulation. The theoretical sections include a derivation of the NASTRAN
fluid matrix equations on the basis of Toupin's principle, a symmetric formulation for
compressible hydroelasticity and a symmetric kinematic formulation for incompressi-
ble hydroelasticity. The incompressible formulation, particularly applicable in the
study of propellant tank dynamics, provides a description of fluid inertia in terms of
bounding surface displacements alone. This description represents a drastic reduction
in system variables. In addition, harmonic reduction is introduced as an efficient

alternative to Guyan reduction for geometrically axisymmetric structures to further
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reduce the number of system variables. Detailed theoretical discussions in the appen-
dices include a derivation of Toupin's principle and the proposed utilization of polyhe-
dral heat conduction elements in NASTRAN as fluid elements (according to a heat
conduction-incompressible flow analogy) to accommodate the analysis of asymmetric

fluid geometries such as a tilted free surface.

Volume II (Ref. 7) consists of detailed information pertinent to the
NASTRAN program. Included is a description of NASTRAN program modifications,
based on the above theoretical developments, consisting of DMAP modifications re-
quired in the calculation of fluid matrix data and in the calculation normal modes for
fluid-filled structures with and without the effects of static pressurization. Special
input bulk data considerations are discussed as an aid to the NASTRAN user. Bulk
data listings for the illustrative problems are presented in the appendices and serve

as supplementary user information.

A series of illustrative hydroelastic problems are presented in the final sec-
tions of this report. They have been chosen to verify the reformulated NASTRAN
hydroelastic analysis and to demonstrate its economy. Exact analytical and available
test results were used as verification data for the NASTRAN analysis. The relatively
complex 1/8-scale space shuttle external tank model is included with the illustrative
examples in spite of a lack of totally satisfactory correlation with experimental data.
Correlations with exact analytical results and experimental results for all other illus-
trative examples, however, are excellent and it is concluded that the formulation of

this report is an accurate and efficient operational approach.

1-2
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2 - THEORETICAL DEVELOPMENT

The class of problems considered in the NASTRAN hydroelastic analysis tech-
nique consists of the interaction of irrotational, inviscid, compressible fluids with
flexible structures for which both fluid and structural motions are assumed small
compared to overall dimensions, The approach used to describe the dynamics of the
fluid is a finite element technique. 'Mass'" and "stiffness' matrices are formed on
the basis of a constructed energy principle with pressure taking the role of general-

" ized displacement and bounding surface displacement taking the role of the forcing
function. The dynamics of the structure is described in the usual way with displace-
ment taken as the dynamic variable and applied pressure taken as the forcing function.
The assembled set of hydroelastic dynamic equations consists of coupled fluid pressure
and structural displacement matrix relationships containing unsymmetric coupling
terms as a result of the mixed set of variables. The unsymmetric form of the

~ NASTRAN hydroelastic equations leads to considerable analytical and numerical diffi-

culty.

© 2.1 DERIVATION OF THE NASTRAN FINITE ELEMENT FLUID REPRESENTATION

The NASTRAN fluid equations are derivable on the basis of a complementary

- variational principle introduced by Toupin in 1952, Ref, 6. The physical interpreta-

" tion of the fluid matrix relationships on the basis of this principle provides the insight
: required to resolve the difficulties present in the NASTRAN formulation. (A detailed
- derivation and discussion of Toupin's principle and its consequences is presented in

. Appendix A).
The equation of motion of a fluid particle is

> 1
U=- 5 VP (2.1-1)
f

The constitutive relationship for an inviscid, compressible fluid is

—
P=-BV-U (2.1-2)
where V.U represents the dilitational strain. In order to obtain a fluid velocity ex-
pression, with Py taken as a mean fluid density, the equation of motion Eq. 2.1-1 is

integrated resulting in

> A
U=-+VP (2.1-3a)

1
Py
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where P is the pressure impulse
A t
P :f P dt (2.1-3b)
- 00
or

A
P=P (2.1-3c)

The usual expressions for kinetic and strain energy may now be expressed in terms of

impulsive pressure as

-7 =1 T Thav = L

T—TC—Efvpf(U U)dv = zf f dV (2.1-4a)
-7 < L T2av=1[ L1

U=0_ = 2fVB(v'-U) dv = zf B (2.1-4b)

The motion dependent and impulse dependent energy expressions are generally not
equivalent} they are equivalent, however, for linear systems. The complementary

virtual work performed by boundary surface displacements, [_J:", is

6Wc:f6P(U ‘n ) dS (2.1-5)
S
The complementary form of Hamilton's principle due to Toupin is
L dt +f dWedt=0 (2.1-6a)
C
to to
with
L=T-T (2.1-6b)

C C C

The expression of the principle in the present application is

31 A9 51 kA A
0 2 p(VP VP (P) dv,dt +4 (U -n)dPdSdt=0(2.1-7)
tg S
Upon ut111zat10n of Green's theorem, integration by parts, and rearrangement of terms
A
the final expression (taking § P=0 @ t=t;, t1) is
tl ..
14 1 _2A)\.A 1 A A L\ A
ft [L(BP_ -p—fV P)éPdV+fS (Tf VP -1 + Un)ap ds] dt =0 (2.1-8)
0

2-2
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and by setting the integrands to zero the well known field equation and natural boundary
conditions for an inviscid, incompressible fluid result which are

A A
Lp-Lyp?p-omv (2. 1-9a)
B P
. 1 _A A A )
U; == PP: ,or P prescribed on S (2.1-9b)
f

The usefullness of the complementary principle lies in approximate analysis rather
than in the derivation of field equations. Consider an approximation of a fluid pres-
sure (impulse) state in terms of a finite set of variables. The fluid complementary

kinetic and strain energies are the quadratic functions

1 AA
T ==X YL.P.P (2.1-10a)
c 2 1 i
- 1 5P
U, =% zl: Jz Cy; Py P; (2.1-10b)
with the symmetric inertance matrix defined as
8 2Tc
L, = ——— =~ (2.1-10c)
U 5P 8B,
1 J
and the symmetric flexibility matrix defined as
8%u
= ¢ (2.1-10d)

C s e —————— g —

U af o

1 )

The elements of the inertance matrix are proportional to %, and the elements of the
flexibility matrix are proportional to % The complementary virtual work is ex-

pressed as

A
. A
SW, = £ 2L x4 |as 67, 2. 1-11a)
i |’soP,

For the special case in which the surface displacements are physically discretized the

complementary virtual work may be expressed as

. A
A {{: :; A, UxéP, (2.1-11b)

2-3



Volume I

with the generalized area matrix defined as

A —_
Aik:f o \faU  Mygs 2. 1-11c)
Sj \8P; a’Uk

Substitution of Eq. 2.1-10 and Eq. 2.1-11 into Eq. 2.1-6 with the appropriate

integrations by parts results in the complementary Euler-Lagrange equations

A A .
(L. P, +C..P.\== XA UX (2.1-12a)
i ij7 ] 1 ]
By taking the time derivative of this expression noting Eq. 2.1-3C, the Euler-Lagrange
equations become

S\ . )
?(Lij P, +C,, pj> .;: A, U (2. 1-12b)

This is the form of the fluid dynamic finite element equations for individual ele-
ments and stacked systems of elements in NASTRAN. In the case of a stacked system
of elements the matrix Ajk represents only bounding surface generalized areas and u*

k
represents discrete surface displacements. The pressures P; comprise the set of

boundary surface and internal pressures; therefore the mattrixJ Ajk is rectangular. The
physical interpretations of the matrix quantities, however differ from the interpreta-
tions in the NASTRAN theoretical manual. The Cij matrix is a flexibility matrix and
the Lij matrix is an inverse mass matrix (see Appendix A). This point is realized with-
out interpretation of Toupin's principle by examination of two special illustrative

cases. Consider first static deformation (T,~0) in which Eq. 2.1-12b takes the form

P. = — Ux* -
z Cij Pj i AUk (2.1-13a)
J
which twice integrated is
= - * -
J;cij PJ. f AikUk (2.1-13b)

2-4
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The matrix Cij is recognized as a flexibility matrix in terms of pressure. Fur-

ther clarification is realized by noting that

- — -1 = - * -
Fl —EAAJ. Pj ? )f EAleij AikUk Zé KﬂkUk (2.1-14)

where Klk is a stiffness matrix relating surface Fﬂ forces and displacements Uy The
second special case consists of an incompressible fluid (Cij——O) in which Eq. 2.1-12b

takes the form

zj: LPy == 1\5 Ay U (2.1-15)

The inertance matrix, Lij must coutain one singularity. This singularity, which will
be discussed fully in Section 2.3, is due to the fact that an incompressible fluid under
uniform pressure does not deform. It is however apparent in Eq. 2.1-15 that the in-
ertance matrix, as in the case of the flexibility matrix Cij’ is an inverse '""'mass-type"

matrix.
2.2 A SYMMETRIC FORMULATION FOR COMPRESSIBLE HYDROELASTICITY

The formulation presented in the NASTRAN theoretical manual utilizes the com-

plementary Euler-Lagrange equations for a fluid
. T (-
(L) {P} + (Cf){P} == (A ){U} (2.2-1a)
and a standard set of structural dynamic equations
(MS){ij} , (KS){U} = (A) {P} (2. 2-1b)

The above are combined to form the unsymmetric set of hydroelastic equations

= (2.2-2)

2-5
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Considerable numerical and analytical difficulty has been encountered by NASTRAN

users due to the unsymmetric form of these equations.

An alternate symmetric formulation is derivable by the complementary principle
or by manipulation of the structural dynamic equations. Taking the latter approach,
the internal structural generalized forces, Fs’ are related to the structural displace-

ments, U, according to

(KS){U} = {FS} (2.2-3a)
Suppose that Ks represents a supported stiffness matrix; the transformation to internal

forces is therefore defined as

e |
{U} = (KS ){FS} (2.2-3b)
Substitution of the above into Eq. 2.2-1b results in
-1 .. a
(MS)(KS ){Fs} + {Fs} = (A) {P} (2.2-4)
and premultiplication by the inverse of the structural mass matrix yields
(Cs){FS} + (LS){FS}— (L )(A) {P} ={o} (2. 2-5a)
with
(C = (K (2. 2-5b)
s S

representing the structural flexibility matrix and
(L) = (2. 2-5¢)
s s '

representing the structural inertance matrix. Utilizing Eq. 2.2-3b and Eq. 2.2-5a the

expression for acceleration to be substituted into the fluid Eq. 2.2~1a is

{U} B (Cs){.l;:s} - (Ls)(A){P} - (Ls){Fs} (2.2-6)
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and the fluid dynamic equation is rewritten as
(L ){P} +(C ){'P'} - -ty A){P} + T ){F } 2.2-7)
f f S s S )

The set of hydroelastic equations in terms of force type variables consisting of
Eq. 2.2-5a and Eq. 2.2-7 now takes the symmetric form
£ ! 0
----- :----- F S+ TR =% (2.2-8)

] S 1

The formulation presented here provides a basis for modification of the
NASTRAN formulation for inviscid, compressible fluid hydroelastic problems. The
class of problems of interest in the current work, however, is limited to inviscid,

~ incompressible fluids interacting with flexible structures and an alternate simplified

kinematic formulation is derivable for this case.

9.3 A SYMMETRIC KINEMATIC FORMULATION FOR INCOMPRESSIBLE HYDRO-
ELASTICITY

The complementary Euler-Lagrange matrix equation set for the special case of

an incompressible fluid (B=0, (C;)—0) in a conveniently partitioned form is

£ ! £ y
o\l - 5
sf . SS si s U (2.3—1)
I S dn B )
TS ) S
1 ]
Lig ¢ Lig ¢t By /\®y

The pressure partitions Pf, Ps and Pi correspond to free surface, structural
interface surface and internal fluid pressure sets, respectively, and the displacement
partitions Uf and Us correspond to the free surface and structural interface surface
displacement sets, respectively. The structural dynamic equation set with applied

fluid pressure loading is in partitioned form

1 ] A ] :O P
000 \(Up), (e Ko \ (Ve | o (S UMW B sy
A A + et bl hladiadied - ----'-:A;--:-O— P .

0 M Usj Kst 1 Bas Us Agp ! Pgs 5
P
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where Ms is the structural mass matrix, Kss is the structural stiffness matrix and
Kff, Kfs’ st, are additional stiffness matrix contributions resulting from the gravi-
tational potential and possibly ullage pressure fluctuation.

It is obvious from Eq. 2. 3-1 that the internal pressures are related to the sur-
face pressures as

{Pi} T (Lii)—l(Lif : Ligh ¢===0 + (2.3-3)

and the reduced fluid dynamic equation set in terms of surface quantities only is

) ’ T T\ i
L Bes \[Pe)_ (2 Ast (U
: , - T T N (2.3-42a)
P A A U
sf ss S fs “'ss S
with
L, L. L. L L.
S T L D R R AR (2. 3-4b)
, ; L L L ii if "is)
sf  ss sf  Tss si

The reduced inertance matrix is singular since an incompressible fluid under
uniform pressure does not deform. This singularity must occur ideally in the indivi-
dual finite element inertance matrices as it is a necessary condition for compatibility.
This is analogous to the condition imposed on structural finite elements that requires
no internal stresses under rigid body motion (i.e. singular element stiffness matrices).
There are two approaches to eliminating the uniform pressure singularity; the first is
a general approach and the second is a special case in which part of the fluid surface

is at zero pressure.
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In the special case of zero free surface pressure (gravitational and ullage stiff-

ness negligible) the fluid surface dynamic equation set Eq. 2. 3-4a is under the single

{Pf} = {0} (2. 3-5)

and the singular pressure state, uniform pressure is removed from the total surface

point constraints

pressure set. The partitions of Eq. 2. 3-4a now reduce to

(Lf's){Ps} = - (A:fl;) {Uf} - (Agf){ﬁs} (2. 3-62)
(L) {ps} = - (A};){ﬁf} - (A'é"s){iis} (2. 3-6b)

If the free surface displacements are normal to the free surface then the generalized
area coupling partitions are null ((Az‘f) =(0), (Arfl;):- (0)). The matrix partition, (LS'S),
is not singular due the constraint Eq. 2.3-5 and may now be inverted in Eq. 2.3-6b

to form the structural interface pressure recovery equation set

{PS} = - (L;s)_l(Ags){ﬁs} (2.3-7)

Substitution of this relationship into Eq. 2.3-6a yields

(L)L) HA ) {US} - (Afo){'U'f} (2. 3-8a)

and since {Uf consists of outward normal displacements only the free surface area

matrix is non-singular; thus the free surface acceleration (or displacement) recovery

relationship is

{Uf} - (Aff)—T(Lf'S)(LS'S)—l(A:S) {US} (2. 3-8b)

2-9



Volume I

The structural dynamic equation set Eq. 2.3-2 under the constraints Eq. 2.3-5

is

(Mss){ﬁs} 4 (KSS){US} - (ASS){pS} (2. 3-9)

Substitution of the pressure recovery relationship Eq. 2.3-7 into the above set re-

sults in
(MS+Mf){ijs} + (KSS){US} = {0} (2. 3-10a)

with the symmetric fluid mass matrix formed as

s =1

T
sg) A

(M S8

ML ) (2.3-10b)

f) ss

Thus in the special case of an incompressible, inviscid fluid with zero pressure
fluctuation on a free surface, the hydroelastic dynamics problem reduces to a standard

problem in structural dynamics.

Consider now the general case of incompressible fluid/structure interaction in
which the entire bounding surface of the fluid interacts with flexible structure and a
gravitational potential or ullage volume. As in the above special case, all internal
pressures are dependent on surface pressures Eq. 2.3-3 and the resultant reduced
fluid inertance matrix is singular. In the case of a fluid represented by discrete sur-

face pressures the normalized uniform pressure state is

Pf 1
=l=1 (2.3-11)
P '

5 1

Under such loading the surface normal accelerations must be null and the necessary

property of the reduced inertance matrix is

ZL =0 (2.3-12)
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for all i. The fluid representations in NASTRAN are currently limited to axisymme-
tric geometries in which fluid pressures are described in terms of circumferential

harmonics, e.g.,

N N
P(r., 6., 2z,)= z P (r. ,z)cosKg.+ X Px(r., z,)sinKg. (2.3-13)
) R G| K=0,1,.. KYVi,)"i i K=1,2, .. KYi' 7i i

The fluid finite elements are rectangular and triangular solids of revolution and the
generalized pressure degrees of freedom are the amplitudes PK and P’{i. In this case
the zeroth harmonic (n = O) generalized pressure subset contains the uniform pressure
state and the higher harmonic (n> O) subsets by definition do not contain the uniform
pressure state. Thus the discrete pressure considerations described by Eq. 2.3-11 and
Eq. 2.3-12 hold for the zeroth harmonic. The singularity in the reduced inertance
matrix is removable by artificially setting one pressure to zero (in the case of gener-
alized harmonic pressures this pressure must be in the zeroth harmonic subset), For
convenience let the pressure partitions {Pf} and {PS} represent the single artificially
nulled pressure and the remaining pressures, respectively; in addition let Pf rep-
resent a pressure associated with the fluid free surface. The artificially constrained

pressure set is denoted as

= (2. 3-14)

in which the primed set represents pressure deviations from a uniform pressure state

of value, Pf, i.e.,
(2.3-15)

Assuming that the area coupling partitions are null ((Agf)=0, (Afs)T =(0)) the pressure

deviations are related to the surface displacements as

(Lf's){P;} =~ (A {Uf} (2.3-16a)
(L) {P;} = —(Ags){ﬁs} (2. 3-16b)
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Solution for the pressure deviations in Eq. 2. 3-16b and substitution of the result into

Eq. 2.3-16a yields the pressure deviation recovery relationship

{P'} =— (L )y 1at ){'U's} (2. 3-17a)

S8 S8

and the displacement recovery relationship

ST, ¢ 1, T
U ATTL 1,71A
_E(_ [Zff Tsss Tss ) )y (2. 3-17b)
S ——

The above result is equivalent to imposing a kinematic constraint on outward normal

surface flow (incompressibility)

| T
0 D =T Lol \ (A U
T = ~— T (2.3-18)
ATu ( \o [~ 1—/]aTu_
The companion pressure constraint expression is
P, I e P,
— = 1, N ) (2.3-19)
P -L "L I1/|P
S ss ~sf \ s

Substitution of Eq. 2.3-18 and Eq. 2.3-19 into Eq. 2.3-4a yields the result already

obtained in Eq. 2.3-16b
0 0 {Pf s 0
’ ’ = - T .. l (2- 3—203.)
0 LSS PS tAssUs)

where the singularity condition is expressed as

’

. r =1 ’ ’
(Lgp) = (Lgg)(Lg) (L = (©) (2. 3-20b)
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The constraints presented in Eq. 2. 3-18 and Eq. 2. 3~19 are now applied to the struc-

tural dynamic equation set Eq. 2.3-2 as

T 0 l 0 . T M Kee | Kg )
( I) Vv + | 1 s V(I Nu
r | 0 Ms (\T\.){ S} (r \) K K (\I\ { S}

sf Ss
A, |0 1 | o\(p/
R ff f
- (I“T 10 N (2. 3-21a)
0 |A G I /(P
SS hY S
where
=T /7 -1,,T _
(1) = (Agp Mg (L ) T(Agg) (2. 3-21D)
I AR | )
(G) = = (L WL ) (2. 3-21c¢)
The coefficient matrix on the right side of Eq. 2.3-21a reduces to
T T _ )
( Agp T AG | A =0 1A (2. 3-22)

Substitution of the pressure deviation recovery relationship Eq. 2. 3~17a into Eq.
2.3-21a noting FEq. 2.3-22 results in the symmetric kinematic equation set

x

.. . _ )
(M + M) {US} + (K2) {US} {0} (2. 3-23a)
where the fluid mass matrix is as in the special case, Eq. 2.3-10b

—1AT

(M) = Ag Lo A (2. 3-23Db)
and the hydroelastic stiffness matrix is
(K*) =Tk, +K, +K T+ K (2. 3-23¢)
s ff fs sf ss ’
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Complete displacement recovery is obtained through Eq. 2.3-17b and pressure devia-
tion recovery is obtained through Eq. 2.3-17a. Complete pressure recovery is
achieved by combining the upper partition equation set in Eq. 2. 3-2 with Eq. 2.3-17

and Eq. 2.3-19; thus the pressure recovery equation set is

-1
{Pf} = (A K T K {Us} (2. 3-24a)
N
P, 1| 0\ (P
L= = _f (2. 3-24b)
P G I P/’
S N S

The general symmetric kinematic formulation developed above is useful in hy-
droelastic analyses for which free surface strain energy and structural strain energy
are equally significant. In most practical analyses involving liquid filled tanks the free
surface strain energy is much smaller than the structural strain energy. Thus low
frequency slosh dynamics is usually approximated with rigid structure, and flexible
structure/fluid interaction is usually approximated with zero free surface pressure

(the special case first developed in this section).
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3 - HARMONIC REDUCTION OF GEOMETRICALLY AXISYMMETRIC STRUCTURES

The NASTRAN hydroelastic analysis provides for a description of dynamics of
axisymmetrically configured fluids in terms of circumferential harmonic pressure

distributions. The distribution of pressure is

P(r;,6 » 2;) = Po(ry 2)

+ kg PK(ri, zi)cos k Oi + P’f{(ri, zi)sin kei (3.1-1)

The fluid containing structure is described in terms of discrete physical dis-
placements so that the structural representation is not limited to structurally axisym-
metric containers. Coupling of harmonic pressure distributions with discrete struc-
tural displacements in the NASTRAN formulation is not strictly consistent; moreover,
in many cases it is inefficient. When a structure described in terms of discrete dis~
placements is coupled with a fluid described in terms of circumferential harmonics,
inconsistencies may arise if too few pressure harmonics are utilized; structural de-
formation shapes associated with higher harmonics not included in the fluid represen-
tation will reflect a lack of fluid inertia loading. Alternatively, when the discrete
structural grid is too coarse to accurately describe the highest harmonic pressure
distributions, large errors in the mode shapes associated with higher harmonics will

be present.

A consistent grid representation is realized by imposing a kinematic set of
constraints on the structure restricting it to deform in circumferential harmonic pat-
terns. For cylindrical coordinates (Fig. 3-1a) the relationships between a discrete
displacement and the harmonic displacement amplitudes are:

N

- * ;
Ul(ri, 0 P zi) = k:z() [Ulk(ri’ zi)cos kei + Ulk(ri, zi)sm kei] (3.1-2a)
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Fig. 3-1 Cylindrical and Spherical Reference Frames
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N

U, (r;,6 = X
k=0 L

N

Ug(ryr0 45 2) = &

N

(r.,0 N= X

41 i k=0

N

N

Ug(r;: 6 ,g)=k£

. X
U2k(ri’ zi)sm kei + Uzk(ri, Zi)COS koi]

k

r— . *
U4k(ri, zi)sm 1«:9i + U4k(ri,

-

U6 (r sm k0 +U6 (r

* . "1
Ug (ri, z,)cos kOi + U3k(ri, z;)sin k9i
z.)cos k6.
i i

sk .
(—Usk(ri, zi)cos koi + U5k(ri, zi)sm koi

-

-

B

cos ke

.J

For spherical coordinates (Fig. 3-1b) the relationships are:

N

N
'Uzk(pi,91,¢i)==k£g

N
U%Jprei,¢i)=k§)

N
Uy, (P 6 p P = k§0

-

|k
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* . ]
U, (P, 6 )cos kd’i + Ulk(pi,e Jsin k¢i

J

* . 7
Uzk( P, Oi)COS k¢i + Uzk(Pi, 6 ;)sin k¢i

-

- . . 1
U3k( P, 6 ;)sin k¢i + Usk( P, 6 ,)cos k¢i

-

. *
U4k(p1’ 6 i)Sm k¢1 + U4k(pl,0 i)COS k¢11

-
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(3.

(3.
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(3.
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N % 7

Us (P09 ) = Z hU5k(pi,9 psin k@ + Us, (P16 j)cos k¢i_ (3.1-3e)
N or * . ]

Uﬁk(pi’ 6,0, = kfo -Uﬁk(pi,e ;Jcos k¢i + U6k(pi, 6 ;)sin k¢i- (3.1-3f)

Symmetric and antisymmetric displacement distributions are represented by un-
starred and starred variables, respectively. It should be noted that all rigid body

motions are represented by the above displacement distributions.

Harmonic transformation of a discrete structural grid is accomplished in
NASTRAN by the use of multipoint constraint (MPC) statements. The harmonic de-
grees of freedom must be accounted for by supplementary grid points (in addition to

the physical discrete grid). The general form of the harmonic transformation is

3Um$= (G iUni (3. 1-4)

where Um corresponds to the physical grid degrees of freedom to be transformed,

and U, corresponds to the harmonic degrees of freedom (plus any discrete degrees of
freedom not transformed). The transformation or constraint matrix Gm is composed
of the appropriate sinusoidal functions evaluated at the discrete variable locations in
accordance with the relationships outlined in Eq. 3.1~2 and Eq. 3.1-3. For a typical
structure with JxK grid points such that there are J meridional rows and K circumfer-
ential points in a row, the grid "g" set has typically 6xJXK degrees of freedom and the
matrix semibandwidths are 6xK (assuming K<J). Application of the harmonic trans-
formation as a reduction scheme where the number of harmonics, N, is much less than
K results in a Uy set of 6xJxN generalized coordinates with matrix semibandwidths of
6xN. If N<K harmonic reduction represents a radical reduction in the number of de-
grees of freedom as well as matrix bandwidth. Further reduction of the system de-
scription is possible by a small Guyan reduction by choosing the generalized rotation
degrees of freedom and tangential displacements as members of the omitted set of dis-
placements. In such a case the analysis set consists of JxN degrees of freedom. This
represents a radical reduction in degrees of freedom by a factor of (N/6K) without a

costly large matrix decomposition typical of Guyan reduction.
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The economy and accuracy of harmonic reduction was first tested on the spheri-
cal cap with uniform thickness illustrated in Fig. 3-2. A nodal grid consisting of 20
circumferential divisions in a semicircle and 10 meridional divisions was chosen
resulting in a 1266 DOF "g-set'" structural model. Three circumferential harmonics
(0, 1, 2) were chosen for harmonic reduction. It should be noted that the apex node is
left in terms of rectangular coordinates since the polar degrees of freedom have no
meaning at this node. After application of the fixed-base boundary condition and sym-
metric kinematic constraints at the pole the reduced representation consists of a 138
DOF '"f-get'". A small Guyan reduction omitting the non-zero displacements at the
pole and rotational and circumferential generalized displacements yields a 72 DOF
"a~set". At this point, all natural frequencies and the first 15 modes were calculated

by the Givens method.

The results of the above strategy were then compared to STARS-II (Ref. 8)
results which were assumed exact. In addition, NASTRAN results utilizing various
Guyan reduction strategies illustrated in Figs. 3-3 and 3-4 were compared to the

STARS-II and harmonic reduction results.

A comparison of natural frequency results (Table 3-1) indicates that the overall
accuracy of the 72 DOF harmonic reduction representation is better than the 190 DOF
Guyan reduction representation. The quantities 4, are representative of fractional
frequency errors and 45, the frequency squared errors, are representative of mode
shape errors. Comparisons of the first two axisymmetric mode shapes illustrated
in Fig. 3-5 indicate that although frequencies are rather accurate, mode shapes may
contain large local errors. Mode shapes resulting from harmonic reduction are

clearly more accurate than those resulting from Guyan reduction.
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Fig. 3-5 60° Spherical Cap, Fixed Base Mode Shape Comparisons
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Another aspect of the harmonic reduction technique is its relative efficiency. A
comparision of harmonic and Guyan reduction Central Processor Unit (CPU) times pre-
sented in Table 3-2 indicates a significantly lower reduction CPU time for harmonic
reduction. This is attributed to elimination of a large scale matrix decomposition,
characteristic of the Guyan reduction, and to the fact that fewer degrees of freedom
are required for comparable accuracy (e. g., harmonic 72 DOF-5% accuracy vs. Guyan
190 DOF-12% accuracy). The CPU time associated with eigenvalue analysis of the har-
monic analysis set is naturally much less than that associated with the Guyan reduction

analysis set.

For the current structural model, circumferential harmonics were uncoupled
due to the axisymmetry of shell thickness. In cases where thickness varies with cir-
cumferential location (@) harmonics will be coupled. The degree of coupling is a func-
tion of the relative abruptness or smoothness of thickness distribution and the thick-

ness asymmetry.

A general purpose FORTRAN IV computer program for generation of multipoint
constraint bulk data cards, HARM, has since been written for typically large hydro-
elastic problems, many constraint statements must be prepared. A listing and de-

scription of this program are presented in Appendix A of Volume II.

Table 3-2 60° Spherical Cap Modal Accuracy/Cost Comparisons (1266 DOF Grid Set)

Reduction Modal Accuracy™® Total Central Processor
Scheme Analysis Set Size (15 Modes) Unit Time (Sec)
Harmonic 72 0.063 238

Guyan 110 0.276 346

Guyan 95 0.149 328

Guyan 190 0.117 531

N 2
*Error = JN z [(wi/ws.)z — 1]
i=1 '
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4 - NUMERICAL RESULTS

The present hydroelastic analysis has been implemented in NASTRAN and veri-
fied and demonstrated on a number of problems. The problems fall into two catego-
ries, namely, analytical verification problems for which exact solutions are known and
demonstration problems for which experimental data are available. The 1/8-scale

shuttle external tank is included in the second category.
4.1 ANALYTICAL VERIFICATION PROBLEMS
Ex. 1. Fluid Filled Hemispherical Container

This first problem consists of the fluid filled hemispherical container
illustrated in Fig. 4-1. The container is massless and follows the artificial structural
law

P=aU, (4.1-1)

The exact free vibration solution for this problem is expressed in terms of spherical

harmonics (Ref. 9). The modal displacements on the structural surface and free sur-

face are
U = P (cos §)cos n ¢ (4. 1-2a)
m-1 4P (cos §)
Ug= ('1%) ———_fjn@ cos n@ (4.1-2b)

respectively. The modal pressure function‘ is

-I;{-) an(cos 9 )cos n (4.1-3)

and the natural frequencies are
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Fig. 4-1 Fluid in a Hemispherical Container
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Fig. 4-2 Fluid in a Hemispherical Container — Finite Element Model
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ma
W :V— -
mn YP R (4.1-4)

The function an(cos 6) is the associated Legendre function for which m is the merid-
ional wave index and n is the circumferential wave index. The allowable indices are

such that the sum m+n must be odd with m > n.

The finite element model of the hemispherical fluid filled container is illustrated
in Fig. 4-2. As a result of the structural law Eq. 4. 1-1 the structural stiffness ma-

trix is diagonal with entries
= OIAi (4.1-5)

where Ai is the area associated with the "ith"' (radial) degree of freedom. All diago-
nal entries not associated with radial degrees of freedom are null. The fluid model is
expressed in terms of the circumferential pressure harmonics n=0, 2, 4 and the
structural surface and free surface grids are reduced by harmonic reduction accord-
ingly. The fluid mass matrix developed in the modified Rigid Format 7 version is ex-
pressed in terms of a 21-degree of freedom analysis set of structural radial displace-

ments (7 meridional locations, circumferential harmonics n=0, 2, 4).

Natural frequencies and mode shapes for the finite element model were calcu-
lated in Rigid Format 3 by the Givens method. A comparison of exact and NASTRAN
calculated nondiménsional natural frequencies is presetfted in Table 4-1 and compari-
sons of selected modal displacement distributions are presented in Fig. 4-3. In gen-
eral the finite element results are in excellent agreement with the exact solution; as
expected in any finite element analysis the level of accuracy decreases with modal

complexity.
Ex. 2. Fluid Filled Circular Cylindrical Shell

The second verification problem consists of the fluid filled circular cy-
lindrical shell illustrated in Fig. 4-4. The shell structure is taken as one with bending
as well as membrane stiffness. The geometric properties of the shell consist of a cy-
linder aspect ratio Z/R = 2 and a thickness ratio h/R = 0.01. In addition, the fluid to
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structure density ratio is 2 f/Ps = 1/3 and the structural material Poisson ratio is
Vv =.3 An exact hydroelastic modal solution is known for an infinitely long cylinder

which holds for the present problem when the structure is subjected to the boundary

conditions
Ur = MO = NO = NZ = O(sheardiaphragm) @z = Z, r = R (4. 1-6a)
P =0 (free surface) @ z =Z, r<R (4. 1-6Db)
ouU &M
_ﬁr =U = a?Z = No =0 (symmetry) @ z=0, r=R (4. 1-6¢)
UZ = 0 (fixed bottom) @ z=0, r<R (4. 1-6d)

The exact free vibration solution is expressed in terms of cylindrical harmonics
(Ref. 10). The normalized modal displacements on the structural surface (r =R,

0<z<7Z) and the free surface (r<R, z = Z) are

_ miz
Ur = C0S —5— cosn 0 (4. 1-7a)

- 7w . mzr
L 27 n 27 )
UZ = cosng (4. 1-7b)

_da mr
dr In( 2Z ) l r=R

respectively, where In (rrzlqur) is a modified Bessel function. The modal pressure

function on the structural surface is

2 m7mR
_ pfwmnIn (.ZZ)

P = mimz
(_rr_x_ﬂ) a 1 (__mﬂ r) r=R

2z

cos n §cos (4.1-8)

27 | dr 27
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Fig. 4-3 Fluid in Hemispherical Container — Mode Shape Comparisons
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Volume I

Noting that the structural deformation shape Eq. 4.1-7a is the same as for an empty
cylinder the hydroelastic natural frequencies are related to the empty structural fre-

quencies g as
mn

Wg
mn

w = (4.1-9a)
R, P

Mg

where mf and mg represent the effective fluid and structural masses

mnR
Pe In( 27 )
M= m m\d [ (mrr (4.1-9b)
27 dr(n( 27 ) ),
mg = Psh (4.1-9¢)

The empty shell frequencies wg are known exactly on the basis of Flugge's shell
mn
theory (Ref. 11).

The finite element models of the shell and fluid are illustrated in Fig. 4-5. The
structural grid for the quarter shell consists of 924 degrees of freedom and the fluid
grid consists of 165 degrees of freedom (55 nodes of rotation, circumferential har-
monics n =0, 2, 4). The harmonic transformation retaining harmonics n =0, 2, 4,
application of single point constraints to enforce boundary conditions, and a small
Guyan reduction retaining only radial displacements ultimately resulted in a 30-degree
of freedom analysis set. Listings of the NASTRAN Rigid Format 7 and Rigid Format

3 data for this problem are presented in Appendix B of Volume II.

All natural frequencies and 25 mode shapes with and without the fluid included
were calculated in Rigid Format 3 by the Givens method. The mode shapes in both
cases were nearly identical to one another as concluded in the exact analysis. Selected
mode shapes for the liquid filled case are illustrated in Fig. 4-6. Frequency spectra
for the empty and fluid filled shells are presented in Fig. 4-7 illustrating excellent

comparison between finite element NASTRAN and exact results in both cases.
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A characteristic of the modified NASTRAN hydroelastic analysis which is as
significant as numerical accuracy is computational economy. On the Grumman IBM
370/165 computer the Rigid Format 3 solution time for the empty cylinder was 2 min.
2 sec; for the fluid filled cylinder the Rigid Format 7 and 3 solution times were 1 min
15 sec and 2 min 6 sec, respectively. These computation times represent consider-
able cost savings for NASTRAN hydroelastic analysis and empty-structure modal

analysis.
Ex. 3. Pressurized Fluid Filled Circular Cylindrical Shell

The above described fluid filled cylindrical shell is now considered in
a uniformly pressurized state. A closed form free vibration solution in this case
follows Eq. 4.1-6 through 4.1~9 with wgmn representing the empty pressurized shell
frequencies. An approximate expression for the adjusted empty shell frequency with

pressurization, PO, (Ref. 10) is

P
w 2

Fmn _ 1+ Gy %R n2 i (miRY 4.1-10
oy Eh 2 \ 2z (4.1-10)

mn

The mode shapes in the pressurized case are the same as in the unpressurized

case.

A modified version of Rigid Format 13 (normal modes with differential stiffness)
was used to calculate modal data for the empty and fluid filled cylinder representation,
with a pressurization level (1— VZ)POR/Eh=O. 001. The models used for this analysis
and all reductions are the same as for the unpressurized case. The frequency spectra
for the pressurized empty and fluid filled shells are presented in Fig. 4-8 for the n=4
modes only; pressurization caused negligible changes in the n=0, 2 modes. The na-
tural frequencies resulting from the NASTRAN analysis are in excellent agreement
with the results based on Eq. 4.1-10. In addition, as in the unpressurized analysis,
computation times were quite satisfactory. Rigid Format 13 modal analysis CPU
times were 3 min 2 sec and 3 min 20 sec for the empty and fluid filled cylinders, re-
spectively; approximately 1 min CPU time was required to generate the differential
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stiffness terms in Rigid Format 13. Rigid Format 13 data for this problem are pre-

sented in Appendix B of Volume II.
4.2 COMPARISONS WITH EXPERIMENTAL DATA
Ex. 1 Liquid Filled Cylinders Under Static Pressurization

A detailed experimental study of the dynamics of structurally axisym-
metric and asymmetric circular cylinders under various liquid (water) fill and static
pressurization cenditions has been conducted at NASA Langley Research Center by
Mr. Robert Herr. Data resulting from these tests (unpublished) are very complete
and serve as excellent information for analysis/test correlation studies. The test
articles are aluminum cylinders with mean radius 25.4 cm and height 50.8 cm. The
cylinder walls are welded at the top and bottom to heavy aluminum plates as illus~
trated in Fig. 4-9. The axisymmetric test article has a cylinder wall thickness of
. 08128 cm and the asymmetric test article has a wall thickness variation around the

circumference 0. 0508 — 0.1016 according to the equation

h—h— = 0.75~0.25 cos @ (4.2-1)

max

The NASTRAN finite element fluid and structural grid representations for the
1/2 fill condition are illustrated in Fig. 4-10. The structural model for a 1/2 cylinder
(0°< 6 <£180°) is described by a sufficiently fine grid to simulate the higher circumfer-
ential harmonic shapes (e.g. n=0-15) which are known a priori from the experimental
results to dominate in the lowest frequency modes. The fluid representation consists
of a fine radial grid near the structural wall to insure simulation of the sharp pressure
gradients in the higher circumferential harmonics; the generalized fluid pressures are
expressed in terms of the symmetric harmonics (cos ng) for n = 0 to 15. The grid set
for the half filled cylinder consists of 480 pressure degrees of freedom and 2, 046 struc-
tural degrees of freedom. The structural description in this case is not reduced by
harmonic reduction since all harmonics up to n=15 are of interest and insignificant

computational economization would be gained by the harmonic transformation.
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Volume 1

The first series of problems studied pertained to the cylinder of uniform thick-
ness. The empty cylinder was first considered with an assumed axial plane of symme-
try at z=25.4 cm such that only m=1, 3,5 modes would be calculated. The grid set of
1116 degrees of freedom consisting of nodes below z=25.4 cm was reduced by Guyan
reduction to an analysis set of 276 radial degrees of freedom with the base assumed
completely fixed (clamped). The analysis on Rigid Format 13 was performed for the
test conditions of zero pressurization and static pressurization at 5.516x104N/m2. The
frequency spectrum of m=1, n24 modes is illustrated in Fig. 4-11 along with the test
results. The calculated frequency spectrum was higher in both cases than the experi-
mental frequency spectrum. A series of structural model modifications to reconcile
the differences in results were considered and it was finally concluded that axial flexi-
bility in the cylinder/plate weld provided the proper correction. Incorporation of the
boundary counditions

éu

- "—_I‘ b= = = -
Ur— 5z NZ 0@z=0, 50.8 cm (4.2-2)
resulted in extremely accurate frequency spectra for the empty 0 and 5. 516 x 104 N/M2

pressurization conditions, respectively, as illustrated in Fig. 4-11.

The half filled, unpressurized condition was then considered. The liquid free
surface was described in terms of single point constraints applied to the surface pres-
sures; free surface displacements were not desired as output information. Retaining
only the radial displacements below the free sﬁrface in the analysis set a 248 degree
of freedom fluid mass matrix and pressure recovery matrix were calculated with the
modified version of Rigid Format 7. The cylinder structure in this case does not have
a dynamic plane of symmetry at z=25.4 cm; the lower portion (z<25.4 cm) is loaded
by the fluid inertia and small structural inertia while the upper portion (z225.4 cm) is
loaded only by the structural inertia. This provides motivation for Guyan reduction
with all degrees of freedom at and above z=25.4 cm (not including the supported de-
grees of freedom) "omitted". A Guyan reduction on the structure was then performed
resulting in an analysis set consisting of 248 radial degrees of freedom. Hydroelastic

modes based on the clamped and modified clamped Eq. 4.2-2 end conditions were then
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Volume I

calculated. The m=1, n2>4 modal frequency spectra illustrated in Fig. 4-11 show

that the representation with the modified end conditions is quite accurate as concluded
in the empty cases. At this point it was felt that a hydroelastic analysis with pres-
surization was not required since enough confidence in the model was gained from the
three cases considered above. A study of the unsymmetric cylinder dynamics was then

initiated.

The unsymmetric cylinder structural model consists of the same grid set as in
the case of the axisymmetric cylinder with circumferential thickness variation. The
hydroelastic study of this cylinder was limited to the half filled condition with 0 and
5.516 x 104 N/m2 pressurization and the realistic edge condition Eq. 4.2-2 was ap-
plied. The m=1 mode shapes calculated in Rigid Format 13 for the unpressurized and
pressurized conditions illustrated in Figs. 4-12 and 4-13, respectively, are in excel-
lent agreement with the test results as are the modal frequencies (presented in the il-

lustrations).

Computation times for the cylinder study were moderate since harmonic reduc-
tion was not appropriate and thus not utilized. In all cases considered, all eigenvalues
and 25 eigenvectors were calculated by the Givens method. Computation times for the
empty axisymmetric cylinder (1116 DOF g-set, 276 DOF a-set) were 509 CPU sec and
524 CPU sec for the unpressurized and pressurized cases, respectively. Preparation
of fluid matrix data in Rigid Format 7 required 97 CPU sec and computation of hydro-
elastic modes (2,046 DOF g-set, 248 DOF a-set) required 1,193 CPU sec and 1254 CPU
sec for the unpressurized and pressurized cases, respectively. The increased CPU
time required is predominantly due to the increased structural grid set size of the fluid
filled cases; the increase in Guyan reduction time for systems of equivalent matrix
bandwidth is proportional to the increase in g-set degrees of freedom. Computation
times for the unsymmetric cylinder were similar to those required for the axisymme-

tric cylinder.
ExX. 2 1/8-Scale Space Shuttle External Tank

An investigation of 1/8 scale space shuttle external tank dynamics in a
free-free supported condition has been undertaken. The 1/8 scale external tank
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consists of two separate propellant tanks connected by a cylindrical section. The finite
element hydroelastic model described in detail in Volume II and Ref. 12 consists of a
grid set of 348 pressure degrees of freedom, 2,058 structural degrees of freedom and
768 harmonic structural degrees of freedom. Harmonics n=0, 1, 2,3 were chosen to
describe asymmetric dynamics with the pitch plane taken as an axis of symmetry.

The analysis set of displacements resulting from a combination of harmonic and
Guyan reductions consists of 128 harmonic degrees of freedom associated with out-

ward normal motion of the tank wall.

Three liquid fill conditions have been studied consisting of liftoff, post max Q
and empty. In terms of liquid height above the respective bulkheads, the conditions

are identified as:

o liftoff h Lox ~190.5 cm, h = 358.14 cm

X LH2
) st max Q: h =127 cm, h =330.2 cm
po Q: hygx LH,

® empty: hLOX=hLH2 =0 cm 7 i
The liquid free surfaces are taken normal to the tank axis thus ignoring some

free surface tilt to be experienced in flight since the NASTRAN hydroelastic analysis

is currently limited to axisymmetric fluid configurations. This limitation, however,

can be overcome by utilization of heat conduction polyhedral finite elements as fluid

elements according to the analogy presented in Appendix B,

For each of the fill conditions, 128 natural frequencies and 25 mode shapes and
modal pressure distributions were calculated with very good computational efficiency.
About 20 CPU minutes per liquid level on the Grumman IBM 370/165 computer was
required to perform the entire analysis including matrix assembly, reduction and

modal analysis. In previous attempts to study the dynamics of the same finite element

WEOEIREIEE RN

representation with the old NASTRAN hydroelastic analysis, computation times were

in excess of 70 CPU minutes with only one natural frequency and mode shape computed.
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Modal data for each of the three fill conditions studied are summarized in
Tables 4-2 through 4-4 with dome pressure gain presented as a measure of relative
significance in Pogo susceptibility. The pressure gain is defined as the dome pres-
sure (LO, and LH,) in the vicinity of the feedline interface near the respective tank
bottoms resulting from a unit modal acceleration. Plots of the mode shapes corre-
sponding to the intermediate post max Q fill condition are presented in Figs. 4-14
through 4-35.

Excellent agreement between analysis and experimental frequencies occurred
in the first axial mode but poor agreement occurred in the bending modes. The
source of the discrepency is believed to be in the finite element representation of the

structure and efforts to resolve the discrepency are discussed in Volume II.

Table 4-2 1/8-Scale External Tank Hydroelastic Mode Summary (at Liftoff)

LO2 Dome LH2 Dome
Pressure Gain Pressure Gain

Mode No. Freq. (H2) Modal Mass Description of Mode X 103 X 10

4" 29.7 4751 ET 1st Axial n=0 0.130 0.034

5 345 0.857 LO2 n=2 {No Dome) 0.003 0.001

6" 35.7 0.760 ET 1st Bending n=1 0.040 0.017

7 36.6 0.428 LO2 n=3 {No Dome) 0.008 0.005

8" 54.9 2.667 ET 2nd Axial n=0 0.067 0.09?

9" 57.8 0.131 LH2 Cylinder n=2,3 0.016 0.019
10" 61.4 0.067 LH2 Cylinder n=3,2 0.017 0.034
11 62.1 0.395 LO7 n=3 (No Dome) 0.011 0.005
12° 63.8 0.520 ET 2nd Bending n=1 0.070 0.006
13 68.4 0.581 LO2 n=2 (No Dome) 0.002 0.003
147 96.0 0.618 LO2 n=1 0.102 0.001
15" 96.1 0.433 LO2 n=0 0.302 0.006
16" 109.4 0.455 LO2, LH2 n=0 0.155 0.028
17 114.5 0.741 LO7,LH2n=23 0.008 0.001
18 117.8 0277 LO2 n=3 (No Dome} 0.006 0
197 119.7 0.142 LH2 Cylinder, LOX n=2,0 0.085 0.002
20" 119.8 0.254 LO7 n=0 0.276 0.017
21" 1242 0.221 LO2 n=1 0.253 0.003
22 128.8 0.062 LH2 Cylinder n=3 0.002 0.001
23" 135.0 0.475 LO2 n=0 0.150 0.025
24" 1359 0.431 ET, LOX Dome n=1,0 0.194 0.005
25 138.2 0.589 LO2 n=2 0.008 0.002
“Denotes POGO Sensitive Mode

NOTE: Modes 1, 2, 3 are Rigid Body Pitch Plane Modes
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Table 4-4 Empty 1/8-Scale External Tank Mode Summary

Mode No Freq. (Hz) Modal Mass Description of Mode
4 105.6 0.0425 ET 1st Bending n=1
5 153.0 0.0094 LH2 Cylinder n=3
6 161.7 0.0172 LH2 Cylindern=2, 3
7 226.0 0.0497 ET 2nd Bending n=1
8 257.8 0.0770 ET 1st Axial n=0
9 274.7 0.0271 [LH2 Cylinder n=2,3

10 328.3 0.0122 LH2 Cylinder, LOX n=3,2

1 332.0 0.0149 LO2, LH2 n=3,2

12 332.8 0.0234 LO2, LH2 n=3,2

13 343.7 0.0118 ET n=3

14 357.8 0.0696 ET Bending n=1,3

15 431.0 0.0210 LH2 Cylinder n=2

16 459.1 0.0615 LH2 Cylinder n=3, ET n=1

17 4729 0.0114 LH2 Cylinder n=3

18 482.2 0.0185 ET n=2

19 498.6 0.0076 LO2 n=3

20 513.2 0.0697 ETn=1,2,3

21 533.1 0.0243 ET n=2,1

22 567.2 0.0487 ETn=1,23

23 604.6 0.0391 ETn=2,1,3

24 625.4 0.0116 LO2 n=3

25 628.0 0.0144 ET n=3,2
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Fig. 4-17 1/8-Scale Space Shuttle External Tank — Post Max Q, Mode 7



Volume I

8 SPO ‘D XBI\ 3504 — Yue] eussix3 apInys soeds 31eds-g/L 81-v ‘Big

30

4=



Volume I

; :!‘ - \

B
3 -
S5aw
A )

'."

.
T ¥

4-31

Fig. 4-19 1/8-Scale Space Shuttle External Tank — Post Max Q, Mode 9
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Fig. 4-20 1/8-Scale Space Shuttle External Tank - Post Max Q, Mode 10
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Fig. 421 1/8-Scale Space Shuttle External Tank — Post Max Q, Mode 11
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Fig. 4-24 1/8-Scale Space Shuttle External Tank — Post Max Q, Mode 14
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Fig. 4-25 1/8-Scale Space Shuttle External Tank — Post Max Q, Mode 15
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Fig. 426 1/8-Scale Space Shuttle External Tank — Post Max Q, Mode 16
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Fig. 4-27 1/8-Scale Space Shuttie External Tank — Post Max Q, Mode 17
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Fig. 4-28 1/8-Scale Space Shuttle External Tank — Post Max Q, Mode 18
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Fig. 429 1/8-Scale Space Shuttie External Tank — Post Max Q, Mode 19
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Fig. 4-30 1/8-Scale Space Shuttle External Tank — Post Max Q, Mode 20
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Fig. 4-31 1/8-Scale Space Shuttle External Tank — Post Max Q, Mode 21
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Fig. 432 1/8-Scale Space Shuttle External Tank — Post Max Q, Mode 22
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Fig. 4-34 1/8-Scale Space Shuttie External Tank — Post Max Q, Mode 24
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Fig. 4-35 1/8-Scale Space Shuttle External Tank — Post Max Q, Mode 25
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5 -~ CONC LUSIONS

Symmetric finite element matrix formulations for compressible and incom-
pressible hydroelasticity have been developed on the basis of Toupin's complementary
formulation of classical mechanics. The incompressible formulation applicable in
propellant tank hydroelastic analysis has been implemented in NASTRAN to replace
the unsymmetric matrix formulation. The new technique which utilizes existing fluid
and structural finite elements has been verified and demonstrated to be accurate and

efficient.

The fluid representation according to the new technique consists of a symmetric
fluid mass matrix described in terms of surface deformation only and an additional
surface stiffness matrix when gravitational potential and ullage pressure stiffness are
included in the fluid idealization. The fluid mass and stiffness matrices are then
added directly to the structural mass and stiffness matrices, respectively, forming a
symmetric set of hydroelastic equations in terms of structural displacements. As a
result of the extensive NASTRAN structural modeling capability, differential stiffness
effects due to static pressurization and fluid weight may be accounted for in the struc-
tural idealization. Modal hydroelastic analysis is performed with the same efficiency
as in the case of a non-fluid filled structure as a result of very few additional degrees

of freedom heing required for the fluid.-

The efficiency of the new hydroelastic analysis technique has been enhanced for
both fluid and structure by introduction of harmonic reduction, applicable to geomet-
rically axisymmetric structures, as an alternative to Guyan reduction. When the
number of harmonics utilized is much less than the number of discrete nodes about a
circumference, overall matrix size and bandwidth are significantly reduced. Har-
monic reduction which was developed early in the present study was first demonstrated
on a 60° spherical cap exhibiting superior accuracy and efficiency relative to Guyan

reduction for an axisymmetric structure.

The formulation has been verified by comparison with exact analytical results
for a fluid filled hemispherical container, a fluid filled circular cylindrical shell and
a pressurized fluid circular cylindrical shell. In all three cases, excellent correla-

tion was exhibited as well as very good computational efficiency.

5-1
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Analysis/test discrepancies on the 1/8-scale external tank model have not yet
been resolved. The efficiency of the current 1/8-scale external tank analysis,
however, is very encouraging upon comparison of computation times between the
present analysis and the standard unsymmetric NASTRAN hydroelastic formulation.
Approximately 20 CPU minutes of computer time is required to extract 128 natural
frequencies and 25 mode shapes with the present analytical technique while more
than 70 CPU minutes was required with the standard NASTRAN hydroelastic analysis

to extract a single natural frequency and mode shape.

The analysis/test correlation study on symmetric and unsymmetric circular
cylindrical shells under various fluid fill conditions and static pressurization is

considered very good.

It is strongly recommended that the present NASTRAN hydroelastic analysis be
extended to include the capability for modeling non-axisymmetric fluid geometries by
use of polyhedral heat condition finite elements. Long term goals anticipating future
analytical requirements should also be pursued including implementation of the
synimetric compressible hydroelastic formulation and development of general

polyhedral compressible fluid elements.

5-2
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APPENDIX A - TOUPIN'S VARIATIONAL PRINCIPLE

A complementary variational formulation of classical mechanics utilizing
impulse quantities as generalized coordinates was introduced by Toupin in 1952
(Ref. 6), This formulation, which may be interpreted as a dynamic generalization of
the complementary energy principle of statics, has not received much attention in the
development of analytical methodology; it is advantageous in most analyses to utilize
displacement quantities as generalized coordinates. As in the displacement formula-
tion of mechanics, complementary counterparts of D'Alembert's Principle, Hamilton's
Principle and the Euler-Lagrange equations are derivable as consequences of Newton's
laws. The development presented here closely parallels the derivation of the varia-

tional displacement formulation in mechanics.

Newton's second law states that for a particle
(A-1)

with T and F representing the velocity and force vectors, respectively, and with m
and f’o taken as constants. Newton arbitrarily defined m o 38 the particle mass and
Po as unity thus setting the course for development of displacement oriented formula-
tions in mechanics. By arbitrarily defining m as unity and !o as the particle inert-
ance the course is now set for development of alternative formulations; the inertance
is simply the inverse of mass. Integration of (A-1) with respect to time results in
- t .
T =4 f Fat + 7o) (A-2a)
o

or by taking the initial velocity as a consequence of all previously applied force

(o]
T(o)= £, f Fdt (A-2b)
-

the concise integrated statement of Newton's law is

—_ A
T(t) =£’o F(t) (A-2c)
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with ¢
A -
F(t)=f Fet) dt (A-2d)

- o0

A
The quantity F(t) is the total impulse which has brought the particle from rest to the
current velocity. The above statements also hold for aggregates of particles.

It is now postulated that a system of n particles moves such that under the

A
arbitrary virtual impulses, § Fi’

n - A A
z (ri ~ foi Fi) " 6 Fi =0 (A-3)
i=1

where f-: denotes the position vector with respect to a Newtonian reference frame.

The above is the complementary counterpart of D'Alembert's principle. Integration

of the above expression over the time interval (to, tl) results in

t t
1 n 5 A 1 qn A A

f £ (r;- 8F,) dt- f I po; Fyt 6F,dt=0 (A-4)

t =1 t =1

8] 0

At this point it is convenient to define the complementary kinetic energy and virtual

work functions which are

n AN
T, = 1/2 X foi Fi* Fi (A-5a)
i=1
and
n _ A
6Wc = ¥ r; : dFi (A-5b)
i=1

respectively. The time integral of the virtual work function integrated by parts is

t t
1 1n - A
fowcdt= / L @ 8F)at
t t7 i=1

0 0
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t t
n A 1 1 n 5 A
- I T 4F - / r (- dFi) dt (A-6a)
i=1 to to i=1
By imposing the constraints
Fa) A
6F, )= oF, (t;)=0 (A-6b)

the complementary virtual work function is expressible in the alternate form

—

AYEE i
r. - §F.) (A-6c)

On
=
"
|
Mo

[
[N

i=1

Incorporation of Eq. A-5a and Eq. A-6c into Eq. A-4 yields the statement of the

complementary Hamilton's principle

Y

f (8T, + W ) dt =0 @

t
o

If the complementary work function, Wc, is expressible as

- _ / _
W, =-U, +W, (A-8)

where Uc defined as the complementary potential energy function has the general

functional dependence

A

A
U —Uc (Fl,..., F

N N
F,,..., F
C

n’ 1’ n ;t) (A—g)

and Wc/is the remaining part of the work function best thought of as dependent on

externally applied displacements (or velocities) such that

n —- A
(r; * 0F) (A-10)

6W/=—
¢ e

i=1
The complementary Lagrangian function is now designated as

L =TC-D

o (A-12)

c
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and the complementary form of Hamilton's principle is
t , ) t
1 A A A A r
5[ L, (Fpauees Fry Froeeny Fry bdt+ f §W/dt=0 (A-12)
t t
o o}
In order to derive a general set of complementary Euler-Lagrange equations

(Toupin's equations) the notation of generalized impulse coordinates is introduced.

The generalized impulses are defined as those which
® Determine the dynamic configuration of the system

e May be varied arbitrarily and independently without violating the constraints

of the system.

Consider now a system of n particles for which the individual impulses are functions

of m (m < n) generalized impulses, i.e.,

A ACA A ]
=F Q) s-»Q»t)hi=1...yn (A-13)

The functions F are assumed contmuous with continuous partial derivatives and the

time derivative of the total impulse F is

A
i oF i,\ 8F, A 8F
Fi= —5Q +..+ = Q_+— (A-14)
8Q 8Q t

Thus the complementary Lagrangian has the functional dependence

A A A A
L,o=L, @ s-s Qs Qreees Q1) (A-15)
A
The variation of impulse, Fi’ is
oF F
; ar,
Y i A i A
6F, = —= §Q, +...+ —— 6Q (A-16)
i 8/Q\ 1 aQ m

and the external complementary virtual work Eq. A-10 is expressed as

. A . A
owc’= - [ql Q) +eeotq de] (A-17a)
e e
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where
A
) n aFi -
qje= I = rie;3=1,...,m (A-17b)
i=1 j

Substitution of Eq. A-15 and Eq. A-17 into Eq. A-12 results in

m t
1| /5L A 8L :
- ¢ £ 55 = -18
I / ‘%‘f 9, ) 89 +a6 6Q, |dt=0 (A-18)
=1 € j

Integration by parts noting the constraints at the limits
5Q, ¢ )=8Q. (t,)=0 19
Qj (0) - Qj ( 1) - (A— )

yields

b3 o _ d 6L> d
_c_4d t=0 (A-20a)
f @ (@

where the Euler-Langrange equations are the integrands
ﬁ ag -~ tq, =0 (A'ZOb)

Application of the complementary principle to large deformation and other non-
linear problems requires a re-education of the analyst; one's physical intuition must
be reoriented towards kinetic rather than kinematic considerations. Restricting
further discussion to small deformation problems (in particular conservative small
vibration problems), the kinetic and potential energy expressions reduce to the

quadratic forms

m m
s r L@ Q. (A-21a)
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and . .
A A
Uc =Uc (Ql LI ] Qm)
1 m m A /.\
=5 I X Cij Qi Qj (A-21b)
i=1 j=1
respectively. The matrix set of Euler-Langrange equations resulting from Eq. A-22
is
A A .
@ {8} + © {3} = {a,} (A-222)
A
Taking the time derivative (noting that Q = Q) the result is
w {a} + © {3} = fd,) (a-22D)

where {Q} is the generalized force vector, (L) is the generalized inertance matrix
and (C) is the generalized flexibility matrix. The significance of the matrices becomes
apparent when the equations are rearranged as

© {ef = fi} + fdy} - firor } (A-23)

where

fig} = - © {3} (a-24)

are interpreted as "complementary D'Alembert accelerations'. Thus (L) is the
inverse of the generalized mass matrix (M), In the case of statics the kinetic energy
is null and the special equation (integrated twice)

© {a} = {a,} (a-25)

represents a statement of static equilibrium; and the flexibility matrix (C) is identified

as the inverse of the generalized stiffness matrix.
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The qualities of a complementary formulation are best illustrated by a set of

simple examples.
Example 1:

Consider first the simple oscillator with base excitation, Ije, illustrated in

Fig. A-1. The kinetic and strain energies are

A
LF?, U,

T =

_1 Az
. =3 CF (A-26)

toli=

respectively and the complementary virtual work is
w/=-U_4F (A-27
(] c - " Ve 6 )
The resulting Euler-Lagrange equation is

A A
LF +CF = U, (A-28)

Noting that the inertance and compliance are inverses of mass and stiffness, respec-

‘/L ’K
W= c=Vum (A-29)

Consider now the free-free system illustrated in Fig. A-2. The kinetic and

tively, the natural frequency is

Example 2:

strain energies are

1. A2 10 AN )
T,=5L F +5L, (F+F,) (A-30a)
_1 A2
U, =5 CF (A-30b)
N

Noting that the external impulse Fe is prescribed and has no variation (§Fe = 0) the
Euler- Lagrange equation is

A A A
(L, + L) F+CF=-L, F, (A-31)
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Fig. A-1 Simple Oscillator with Base Excitation
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Fig. A-2 Free-Free System
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In terms of the particle masses, My, Mz), the inertance of the system is

M. M
(1 1 N\N_(__1°2 -
by 7 Lz)_(Ml +M2>— (Ml +M2> (=52

which is immediately recognized as the inverse of the relative mass. Rigid body
motion singularities are automatically removed in the complementary formulation.

The complementary forcing function

A JE S A-33
L2e_ﬁ2 e e (A-33)

is equivalent to an effective base motion input.

Example 3:

Consider the two-degree of freedom system illustrated in Fig. A-3. The kinetic

and strain energies are

_1 A A
Tc _ELlFl s L2 (F2 - Fl) (A-34a)
1.A2 1. A2
U, =5C,F;  +5C, F, (A-34Db)
and the Euler-Lagrange equations are
A A
Cl 0 F1 L1+L2 L2 F1 0
gt = (A-35)
A A
0 C, F, L, L, F, 0

The flexibility and inertance matrices are inverses of the stiffness and mass matrices
respectively of the system when the relative displacements Xj and (X, - Xj) are taken
as the generalized displacements. If in the complementary formulation the net

impulses are taken as generalized coordinates, i.e.,

N , AN

F/=F, (A- 36a)
A /_ A A

FJ/=F,-F, (A- 36D)

A-10
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Fig. A-3 Supported Two-Degree of Freedom System
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the kinetic and strain energies are expressed as

1o A2 10 A _
Tc =3 L1 Fi + 2 L2 F?_" (A-37a)
- 1 A 12 1 a / A / 2
Uc =3 C1 F1 + 9 C2 (F2 + Fl) (A-37Db)
and the Euler-Lagrange equations are
c,+C, C 9 / L, o \\F/ 0
172 72 1 1 1
./{‘ -+ A = (A"38)
/ /
02 02 FJ 0 L2, Fg 0

The above flexibility and inertance matrices are the inverses of the stiffness
and mass matrices, respectively, of the system when the absolute displacements are

taken as generalized coordinates.
It is interesting to note that the use of absolute impulse as a generalized coor-
dinate results in a relative displacement equivalent formulation while use of relative

(net) impulse generalized coordinates results in an absolute displacement equivalent

formulation.

A-12
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APPENDIX B - HEAT CONDUCTION - FLUID FLOW ANALOGY

The current NASTRAN hydroelastic modeling capability is limited to axi-
symmetrically shaped fluid configurations modeled with the cylindrical core and
toroidal elements defined on CFLUID2, CFLUID3 and CFLUID4 connect cards. The
possible need for a tilted liquid free surface fluid model for space shuttle external
tank analysis necessitates the use of generally configured fluid finite elements.
Tetrahedral and hexahedral finite elements would satisfy this requirement as well as
any future requirement to model general non-axisymmetric fluid geometries. The
desired general fluid elements are available in NASTRAN in the form of heat conduc-
tion elements; these may be utilized as incompressible fluid dynamic finite elements

by implementation of the analogy presented below.

The field equation and flow boundary condition for an incompressible, inviscid

fluid undergoing small motion are:

vZp=o in v (B-1)
and
A _8P _ .. g
Vp.n_aXn— pu, onS (B-2)

A
On the boundary surface (outward normal X n). The field equation and heat

flux boundary condition for an isotropic solid under steady state thermal loading are:

v2r=0 in V (B-3)
and
A _ BT 1

o%, " Ry 'n

The analogy is now immediately apparent with the following variables taking

equivalent roles:
pressure, P: temperature, T
outward normal acceleration, iin: outward normal flux/area, fn inverse

mass density, p: inverse thermal conductivity, 1/KT
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Consider the '"generalized energy'' principles utilized to derive the finite
element fluid flow and heat conduction equations. The fluid ""generalized potential
energy' is (Ref. 12):

1 (1
va“z { > (VP.VP) dV (B-5)

the corresponding thermal potential function is (Ref. 12):

_1 -
UTV =3 J KT (pT.pT)dav (B-6)

in the special case of an isotropic material,

The variation of outward flow potential for the fluid and the corresponding

quantity for the thermal surface potential are:

- 1vpy.Ads = i _
anB—- Sfap(pVP) nds = Sf&punds (B-7)

and

IA —
6UTB=- é[a'r(KVT) nds = g!.ti‘r'fmdS (B-8)

respectively.

The generalized energy expressions Eqs. B-5, B-6, B-7 and B-8 form the
basis for derivation of mathematically equivalent incompressible fluid flow and
thermal finite elements. The sets of algebraic equations describing fluid dynamic
and thermal states, respectively, are

KfijP § =8 (B-9)

and
KTij 'T'j = —Sifi (B-10)
The utility of fluid flow and thermal elements has just been proven to be inter~
changeable; NASTRAN is capable of modeling general incompressible fluid flow con-
figurations. The thermal elements required are defined by CTETRA, CHEXA1 and
CHEXA2 connect cards. Thermal material properties following the analogy (mass

density, p : inverse of thermal conductivity, K{,l) are specified on a MAT4 card.

B-2 NASA-Langley, 1976 CR—=2662
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